12 research outputs found

    The G_2 sphere over a 4-manifold

    Full text link
    We present a construction of a canonical G_2 structure on the unit sphere tangent bundle S_M of any given orientable Riemannian 4-manifold M. Such structure is never geometric or 1-flat, but seems full of other possibilities. We start by the study of the most basic properties of our construction. The structure is co-calibrated if, and only if, M is an Einstein manifold. The fibres are always associative. In fact, the associated 3-form results from a linear combination of three other volume 3-forms, one of which is the volume of the fibres. We also give new examples of co-calibrated structures on well known spaces. We hope this contributes both to the knowledge of special geometries and to the study of 4-manifolds.Comment: 13 page

    Dynamics of Scalar Field in Polymer-like Representation

    Full text link
    In recent twenty years, loop quantum gravity, a background independent approach to unify general relativity and quantum mechanics, has been widely investigated. We consider the quantum dynamics of a real massless scalar field coupled to gravity in this framework. A Hamiltonian operator for the scalar field can be well defined in the coupled diffeomorphism invariant Hilbert space, which is both self-adjoint and positive. On the other hand, the Hamiltonian constraint operator for the scalar field coupled to gravity can be well defined in the coupled kinematical Hilbert space. There are 1-parameter ambiguities due to scalar field in the construction of both operators. The results heighten our confidence that there is no divergence within this background independent and diffeomorphism invariant quantization approach of matter coupled to gravity. Moreover, to avoid possible quantum anomaly, the master constraint programme can be carried out in this coupled system by employing a self-adjoint master constraint operator on the diffeomorphism invariant Hilbert space.Comment: 24 pages, accepted for pubilcation in Class. Quant. Gra

    Spontaneous symmetry breaking in Loop Quantum Gravity

    Full text link
    In this paper we investigate the question how spontaneous symmetry breaking works in the framework of Loop Quantum Gravity and we compare it to the results obtained in the case of the Proca field, where we were able to quantise the theory in Loop Quantum Gravity without introducing a Higgs field. We obtained that the Hamiltonian of the two systems are very similar, the only difference is an extra scalar field in the case of spontaneous symmetry breaking. This field can be identified as the field that carries the mass of the vector field. In the quantum regime this becomes a well defined operator, which turns out to be a self adjoint operator with continuous spectrum. To calculate the spectrum we used a new representation in the case of the scalar fields, which in addition enabled us to rewrite the constraint equations to a finite system of linear partial differential equations. This made it possible to solve part of the constraints explicitly.Comment: 24 pages, two appendix. v2 modified abstract, amended each section, 28 pages, two appendi

    Non-commutative flux representation for loop quantum gravity

    Get PDF
    The Hilbert space of loop quantum gravity is usually described in terms of cylindrical functionals of the gauge connection, the electric fluxes acting as non-commuting derivation operators. It has long been believed that this non-commutativity prevents a dual flux (or triad) representation of loop quantum gravity to exist. We show here, instead, that such a representation can be explicitly defined, by means of a non-commutative Fourier transform defined on the loop gravity state space. In this dual representation, flux operators act by *-multiplication and holonomy operators act by translation. We describe the gauge invariant dual states and discuss their geometrical meaning. Finally, we apply the construction to the simpler case of a U(1) gauge group and compare the resulting flux representation with the triad representation used in loop quantum cosmology.Comment: 12 pages, matches published versio

    Background Independent Quantum Gravity: A Status Report

    Full text link
    The goal of this article is to present an introduction to loop quantum gravity -a background independent, non-perturbative approach to the problem of unification of general relativity and quantum physics, based on a quantum theory of geometry. Our presentation is pedagogical. Thus, in addition to providing a bird's eye view of the present status of the subject, the article should also serve as a vehicle to enter the field and explore it in detail. To aid non-experts, very little is assumed beyond elements of general relativity, gauge theories and quantum field theory. While the article is essentially self-contained, the emphasis is on communicating the underlying ideas and the significance of results rather than on presenting systematic derivations and detailed proofs. (These can be found in the listed references.) The subject can be approached in different ways. We have chosen one which is deeply rooted in well established physics and also has sufficient mathematical precision to ensure that there are no hidden infinities. In order to keep the article to a reasonable size, and to avoid overwhelming non-experts, we have had to leave out several interesting topics, results and viewpoints; this is meant to be an introduction to the subject rather than an exhaustive review of it.Comment: 125 pages, 5 figures (eps format), the final version published in CQ
    corecore